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a b s t r a c t 

Widely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based on integrals over 

the segmentation regions. Unfortunately, for highly unbalanced segmentations, such regional summations 

have values that differ by several orders of magnitude across classes, which affects training performance 

and stability. We propose a boundary loss, which takes the form of a distance metric on the space of 

contours, not regions. This can mitigate the difficulties of highly unbalanced problems because it uses in- 

tegrals over the interface between regions instead of unbalanced integrals over the regions. Furthermore, 

a boundary loss complements regional information. Inspired by graph-based optimization techniques for 

computing active-contour flows, we express a non-symmetric L 2 distance on the space of contours as a 

regional integral, which avoids completely local differential computations involving contour points. This 

yields a boundary loss expressed with the regional softmax probability outputs of the network, which 

can be easily combined with standard regional losses and implemented with any existing deep network 

architecture for N-D segmentation. We report comprehensive evaluations and comparisons on different 

unbalanced problems, showing that our boundary loss can yield significant increases in performances 

while improving training stability. Our code is publicly available 1 . 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent years have witnessed a substantial growth in the num- 

er of deep learning methods for medical image segmentation 

 Litjens et al., 2017; Shen et al., 2017; Dolz et al., 2018; Ker et al.,

018 ). Widely used loss functions for segmentation, e.g., Dice or 

ross-entropy, are based on regional integrals, which are conve- 

ient for training deep neural networks. In practice, these regional 

ntegrals are summations over the segmentation regions of differ- 

ntiable functions, each directly invoking the softmax probability 

utputs of the network. Therefore, standard stochastic optimizers 

uch as SGD are directly applicable. Unfortunately, difficulties occur 

or highly unbalanced segmentations, for instance, when the size 

f target foreground region is several orders of magnitude less than 

he background size. For example, in the characterization of white 

atter hyperintensities (WMH) of presumed vascular origin, the 

oreground composed of WMH regions may be 500 times smaller 

han the background (see the typical example in Fig. 1 ). In such 

ases, quite common in medical image analysis, standard regional 

osses contain foreground and background terms with values that 
∗ Corresponding author: 

E-mail address: hoel@kervadec.science (H. Kervadec). 
1 https://github.com/LIVIAETS/surface-loss 
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iffer considerably, typically by several orders of magnitude, poten- 

ially affecting performance and training stability ( Milletari et al., 

016; Sudre et al., 2017 ). 

Segmentation approaches based on convolutional neural net- 

orks (CNN) are typically trained by minimizing the cross-entropy 

CE), which measures an affinity between the regions defined by 

robability softmax outputs of the network and the correspond- 

ng ground-truth regions. The standard regional CE has well-known 

rawbacks in the context of highly unbalanced problems. It as- 

umes identical importance distribution of all the samples and 

lasses. To achieve good generalization, it requires a large train- 

ng set with balanced classes. For unbalanced data, CE typically 

esults in unstable training and leads to decision boundaries bi- 

sed towards the majority classes. Class-imbalanced learning aims 

o mitigate learning bias by promoting the importance of infre- 

uent labels. In medical image segmentation, a common strategy is 

o re-balance class prior distributions by down-sampling frequent 

abels ( Havaei et al., 2017; Valverde et al., 2017 ). Nevertheless, this 

trategy limits the information of the images used for training. An- 

ther common practice is to assign weights to the different classes 

hat are inversely proportional to the frequency of the correspond- 

ng labels ( Brosch et al., 2015; Ronneberger et al., 2015; Kamnit- 

as et al., 2017; Long et al., 2015; Yu et al., 2017 ). In this scenario,

he standard cross-entropy (CE) loss is modified so as to assign 

https://doi.org/10.1016/j.media.2020.101851
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101851&domain=pdf
mailto:hoel@kervadec.science
https://github.com/LIVIAETS/surface-loss
https://doi.org/10.1016/j.media.2020.101851
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Fig. 1. A visual comparison that shows the positive effect of our boundary loss on a validation data from the WMH dataset. Our boundary loss helped to recover small 

regions that were otherwise missed by the model trained with the generalized Dice loss (GDL). Best viewed in colors. 
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2 We focus on two-region segmentation to simplify the presentation. However, 
ore importance to the rare labels. Although effective for some 

nbalanced problems, such weighting methods may undergo seri- 

us difficulties when dealing with highly unbalanced datasets, as 

een with WMH segmentation. The CE gradient computed over the 

ew pixels of infrequent labels is typically noisy, and amplifying 

his noise with a high class weight may lead to instability. 

The well-known Dice overlap coefficient was also adopted as 

 regional loss function, typically outperforming CE in unbalanced 

edical image segmentation problems ( Milletari et al., 2016; 2017; 

ong et al., 2018 ). Sudre et al. (2017) generalized the Dice loss 

illetari et al. (2016) by weighting according to the squared in- 

erse of class-label frequency. Despite these improvements over CE 

 Milletari et al., 2016; Sudre et al., 2017 ), regional Dice losses may

ncounter difficulties when dealing with very small structures. In 

uch highly unbalanced scenarios, mis-classified pixels may lead to 

arge decreases of the loss, resulting in unstable optimization. Fur- 

hermore, Dice corresponds to the harmonic mean between preci- 

ion and recall, implicitly using the arithmetic mean of false pos- 

tives and false negatives. False positives and false negatives are, 

herefore, equally important when the true positives remain the 

ame, making this loss mainly appropriate when both types of er- 

ors are equally high. The recent research in Salehi et al. (2017) ;

braham and Khan (2018) investigated losses based on the Tver- 

ky similarity index in order to provide a better trade-off between 

recision and recall. It introduced two parameters that control the 

mportance of false positives and false negatives. Other recent ad- 

ances in class-imbalanced learning for computer vision problems 

ave been adopted in medical image segmentation. For example, 

nspired by the concept of focal loss ( Lin et al., 2018 ), Dice and

vserky losses have been extended to integrate a focal term, which 

s parameterized by a value that controls the importance of easy 

nd hard training samples ( Abraham and Khan, 2018; Wong et al., 

018 ). Furthermore, the combination of several of these regional 

osses has been further investigated ( Zhu et al., 2019 ). The main 

bjective of these losses is to balance the classes not only in terms 

f their relative class sizes, but also by the level of segmentation 

ifficulty. 

More recently, Karimi and Salcudean (2019) proposed a novel 

oss function that attempts to directly reduce the Hausdorff dis- 

ance (HD). This relaxed loss based on the HD is shown to bring 

mprovements when combined with the DSC loss. Nevertheless, its 

ain drawback is the high computational cost of computing the 

istance transforms. Particularly, at each training epoch, the new 

istance maps have to be recomputed for all the images, which in- 

urs in a computationally costly process. This issue is further mag- 

o

2 
ified in the case of 3D volumes, which heavily increases the com- 

utational burden. 

.1. Contributions 

In this paper, we propose a boundary loss that takes the form 

f a distance metric on the space of contours (or shapes), not re- 

ions. We argue that a boundary loss can mitigate the issues re- 

ated to regional losses in highly unbalanced segmentation prob- 

ems. Rather than using unbalanced integrals over the regions, a 

oundary loss uses integrals over the boundary (interface) between 

he regions. Furthermore, it provides information that is comple- 

entary to regional losses. It is, however, challenging to represent 

he boundary points corresponding to the regional softmax out- 

uts of a CNN. This difficulty may explain why boundary losses 

ave been avoided in the context of deep segmentation networks. 

ur boundary loss is inspired by techniques in discrete graph- 

ased optimization for computing gradient flows of curve evolu- 

ion ( Boykov et al., 2006 ). Following an integral approach for com- 

uting boundary variations, we express a non-symmetric L 2 dis- 

ance on the space of shapes (or contours) as a regional integral, 

hich avoids completely local differential computations involving 

ontour points. This yields a boundary loss expressed as the sum 

f linear functions of the regional softmax probability outputs of 

he network. Therefore, it can be easily combined with standard 

egional losses and implemented with any existing deep network 

rchitecture for N-D segmentation. 

We evaluated our boundary loss in conjunction with various 

egion-based losses on two challenging and highly unbalanced seg- 

entation problems – the Ischemic Stroke Lesion (ISLES) and the 

hite Matter Hyperintensities (WMH) benchmark datasets. The re- 

ults indicate that the proposed boundary loss yields a more stable 

earning process, and can bring significant gains in performances, 

n terms of Dice and Hausdorff scores. 

. Formulation 

Let I : � ⊂ R 

2 , 3 → R denotes a training image with spatial do- 

ain �, and g : � → {0, 1} a binary ground-truth segmentation of 

he image: g(p) = 1 if pixel/voxel p belongs to the target region 

 ⊂� (foreground region) and 0 otherwise, i.e., p ∈ ��G (back- 

round region) 2 . Let s θ : � → [0, 1] denotes the softmax proba- 
ur formulation extends to the multi-region case in a straightforward manner. 
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Fig. 2. The relationship between differential and integral approaches for evaluating 

boundary change (variation). 
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ility output of a deep segmentation network, and S θ ⊂� the cor- 

esponding segmentation region: S θ = { p ∈ � | s θ (p) ≥ δ} for some

hreshold δ. Widely used segmentation loss functions involve a re- 

ional integral for each segmentation region in �, which measures 

ome similarity (or overlap) between the region defined by the 

robability outputs of the network and the corresponding ground- 

ruth. In the two-region case, we have an integral of the gen- 

ral form ∫ �g ( p ) f ( s θ ( p )) dp for the foreground, and of the form
 

�(1 − g(p)) f (1 − s θ (p)) dp for the background. For instance, the 

tandard two-region cross-entropy loss corresponds to a summa- 

ion of these two terms for f = − log (·) . Similarly, the generalized 

ice loss (GDL) Sudre et al. (2017) involves regional integrals with 

f = 1 , subject to some normalization, and is given as follows for 

he two-region case: 

L GDL (θ ) = 1 

−2 

w G 

∫ 
p∈ � g(p) s θ (p) dp + w B 

∫ 
p∈ �(1 − g(p))(1 − s θ (p)) dp 

w G 

∫ 
�[ s θ (p) + g(p)] dp + w B 

∫ 
�[2 − s θ (p) − g(p)] dp 

(1) 

here coefficients w G = 1 / 
(∫ 

p∈ � g(p) dp 
)2 

and w B = 

 / 
(∫ 

�(1 − g(p)) dp 
)2 

are introduced to reduce the well-known 

orrelation between the Dice overlap and region size. 

Regional integrals are widely used because they are convenient 

or training deep segmentation networks. In practice, these re- 

ional integrals are summations of differentiable functions, each 

nvoking directly the softmax probability outputs of the network, 

 θ ( p ). Therefore, standard stochastic optimizers such SGD are di- 

ectly applicable. Unfortunately, extremely unbalanced segmenta- 

ions are quite common in medical image analysis, where, e.g., the 

ize of the target foreground region is several orders of magnitude 

maller than the background size. This represents challenging cases 

ecause the foreground and background terms have substantial dif- 

erences in their values, which affects segmentation performance 

nd training stability ( Milletari et al., 2016; Sudre et al., 2017 ). 

Our purpose is to build a boundary loss Dist( ∂G , ∂S θ ), which

akes the form of a distance metric on the space of contours (or 

egion boundaries) in �, with ∂G denoting a representation of the 

oundary of ground-truth region G (e.g., the set of points of G , 

hich have a spatial neighbor in background ��G ) and ∂S θ de- 

oting the boundary of the segmentation region defined by the 

etwork output. On the one hand, a boundary loss should be able 

o mitigate the above-mentioned difficulties for unbalanced seg- 

entations: rather than using unbalanced integrals within the re- 

ions, it uses integrals over the boundary (interface) between the 

egions. Furthermore, a boundary loss provides information that is 

ifferent from and, therefore, complimentary to regional losses. On 

he other hand, it is not clear how to represent boundary points 

n ∂S θ as a differentiable function of regional network outputs 

 θ . This difficulty might explain why boundary losses have been 

ostly avoided in the context of deep segmentation networks. 

Our boundary loss is inspired from discrete (graph-based) opti- 

ization techniques for computing gradient flows of curve evolu- 

ion ( Boykov et al., 2006 ). Similarly to our problem, curve evolu- 

ion methods require a measure for evaluating boundary changes 

or variations). Consider the following non-symmetric L 2 distance 

n the space of shapes, which evaluates the change between two 

earby boundaries ∂S and ∂G ( Boykov et al., 2006 ): 

ist (∂ G, ∂ S) = 

∫ 
∂G 

‖ y ∂S (p) − p‖ 

2 dp (2) 

here p ∈ � is a point on boundary ∂G and y ∂S ( p ) denotes the

orresponding point on boundary ∂S , along the direction normal 

o ∂G , i.e., y ∂S ( p ) is the intersection of ∂S and the line that is nor-

al to ∂G at p (See Fig. 2 a for an illustration) ‖ . ‖ denotes the L 2 
orm. In fact, this differential framework for evaluating boundary 

hange is in line with standard variational curve evolution meth- 
3 
ds ( Mitiche and Ben Ayed, 2011 ), which compute the motion of 

ach point p on the evolving curve as a velocity along the normal 

o the curve at point p . Similarly to any contour distance invoking 

irectly points on contour ∂S , expression (2) cannot be used di- 

ectly as a loss for ∂ S = ∂ S θ . However, it is easy to show that the

ifferential boundary variation in (2) can be approximated using 

n integral approach ( Boykov et al., 2006 ), which avoids completely 

ocal differential com putations involving contour points and repre- 

ents boundary change as a regional integral: 

ist (∂ G, ∂ S) ≈ 2 

∫ 
�S 

D G (q ) dq (3) 

here �S denotes the region between the two contours and 

 G : � → R 

+ is a distance map with respect to boundary ∂G , i.e.,

 G ( q ) evaluates the distance between point q ∈ � and the near- 

st point z ∂G ( q ) on contour ∂G : D G (q ) = ‖ q − z ∂G (q ) ‖ . Fig. 2 b illus-

rates this integral framework for evaluating the boundary distance 

n Eq. (2) . To clarify approximation (3) , notice that integrating the 

istance map 2 D G ( q ) over the normal segment connecting a point

 on ∂G and y ∂S ( p ) yields ‖ y ∂S (p) − p‖ 2 , via the following variable

hange: 

 y ∂S (p) 

p 

2 D G (q ) dq = 

∫ ‖ y ∂S (p) −p‖ 

0 

2 D G dD G = ‖ y ∂S (p) − p‖ 

2 

hus, from approximation (3) , the non-symmetric L 2 distance be- 

ween contours in Eq. (2) can be expressed as a sum of regional 

ntegrals based on a level set representation of boundary ∂G : 

1 

2 

Dist (∂ G, ∂ S) = 

∫ 
S 

φG (q ) dq −
∫ 

G 

φG (q ) dq 

= 

∫ 
�

φG (q ) s (q ) dq −
∫ 
�

φG (q ) g(q ) dq (4) 

here s : � → {0, 1} is binary indicator function of region S : s (q ) =
 if q ∈ S belongs to the target and 0 otherwise. φG : � → R de-

otes the level set representation of boundary ∂G : φG (q ) = −D G (q )

f q ∈ G and φG (q ) = D G (q ) otherwise. Now, for S = S θ , i.e., replac-

ng binary variables s ( q ) in Eq. (4) by the softmax probability out-

uts of the network s θ ( q ), we obtain the following boundary loss 

hich, up to a constant independent of θ , approximates boundary 

istance Dist( ∂ G , ∂ S θ ): 

 B (θ ) = 

∫ 
�

φG (q ) s θ (q ) dq (5) 

otice that we omitted the last term in Eq. (4) as it is independent

f network parameters. The level set function φG is pre-computed 

irectly from the ground-truth region G . In practice, our boundary 

oss in Eq. (5) is the sum of linear functions of the regional soft- 

ax probability outputs of the network. Therefore, it can be eas- 

ly combined with standard regional losses ( L ) and implemented 
R 
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3 http://www.isles-challenge.org 
4 http://wmh.isi.uu.nl 
ith any existing deep network architecture for N-D segmentation: 

 R (θ ) + αL B (θ ) , (6) 

here α ∈ R is a parameter balancing the two losses. 

It is worth noting that our boundary loss uses ground-truth 

oundary information via pre-computed level-set function φG ( q ), 

hich encodes the distance between each point q and ∂G . In 

q. (5) , the softmax for each point q is weighted by the dis- 

ance function. Such distance-to-boundary information is omitted 

n widely used regional losses, where all the points within a given 

egion are treated equally, independently of their distances from 

he boundary. 

Notice that the global minimum (smallest possible value) of our 

oundary loss (5) is reached when all the negative values in the 

istance function are included in the sum (i.e., the softmax predic- 

ions for the pixels within the ground-truth foreground are equal 

o 1) and all the positive values are omitted (i.e., the softmax pre- 

ictions within the background are equal to zero). This means that 

he global optimum is reached for softmax predictions that corre- 

pond exactly to the ground truth, which confirms the meaningful- 

ess of our boundary loss. It is also worth noticing that the gradi- 

nt of our loss is φG multiplied the gradient of the softmax predic- 

ions. This results in negative factors for the pixels in G , which en-

ourages s θ to increase during SGD, with the magnitude (strength) 

f the factors depending on the distance between the pixel and the 

round-truth boundary (the further the pixel from the boundary, 

he higher the magnitude of the factor). Positive factors for pixels 

ithin the background ( ��G ) encourage the softmax predictions to 

ecrease. 

As we will see in our experiments, it is important to use our 

oundary loss in conjunction with a regional loss for the follow- 

ng technical facts. As discussed earlier, the global optimum of 

ur boundary loss corresponds to a strictly negative value, with 

he softmax probabilities yielding a non-empty foreground region. 

owever, an empty foreground, with approximately null values of 

he softmax probabilities almost everywhere, corresponds to very 

ow gradients. Therefore, this trivial solution is close to a local min- 

mum or a saddle point. This is why we integrate our boundary 

oss with a regional loss: the regional loss guides training dur- 

ng the first epochs and avoids getting stuck in such trivial solu- 

ions. In the next section, we will discuss various scheduling strate- 

ies for updating the weight of the boundary loss during training, 

ith the boundary loss becoming very dominant, almost acting 

lone, towards the end of the training process. It is also worth not- 

ng that this behaviour of boundary terms is conceptually similar 

o the behaviour of classical and popular contour-based energies 

or segmentation, e.g., level set Geodesic Active Contours (GAC) 

 Caselles et al., 1997 ) or discrete Markov Random Fields (MRFs) for 

oundary regularization and edge alignment ( Boykov and Funka- 

ea, 2006 ), which require additional regional terms to avoid trivial 

mpty-region solutions. 

. Experiments 

In this section, we perform two sets of experiments. First, we 

erform comprehensive evaluations demonstrating to positive ef- 

ect of integrating our boundary loss with different regional losses 

 R . Then, we perform a study on the different strategies for select- 

ng and scheduling weight α in (6) , showing its impact on perfor- 

ances and good default values for new applications. 

.1. Datasets 

To evaluate the proposed boundary loss, we selected two chal- 

enging brain lesion segmentation tasks, each corresponding to 

ighly unbalanced classes. 
4 
ISLES: The training dataset provided by the ISLES organizers is 

omposed of 94 ischemic stroke lesion multi-modal scans. In our 

xperiments, we split this dataset into training and validation sets 

ontaining 74 and 20 examples, respectively. Each scan contains 

iffusion maps (DWI) and Perfusion maps (CBF, MTT, CBV, Tmax 

nd CTP source data), as well as the manual ground-truth segmen- 

ation. The spatial resolution goes from 0.8 mm × 0.8 mm × 4 mm 

o 1 mm × 1 mm × 12 mm . More details can be found in the ISLES

ebsite 3 . 

WMH: The public dataset of the White Matter Hyperintensities 

WMH) 4 MICCAI 2017 challenge contains 60 3D T1-weighted scans 

nd 2D multi-slice FLAIR acquired from multiple vendors and scan- 

ers in three different hospitals. The spatial resolution goes from 

.95 mm × 0.95 mm × 3 mm to 1.21 mm × 1 mm × 3 mm for each

olume. In addition, the ground truth for the 60 scans is provided. 

rom the whole set, 50 scans were used for training, and the re- 

aining 10 for validation. 

.2. Compared losses 

As stated previously, our proposed boundary loss can be com- 

ined with any standard regional loss. In the following experi- 

ents, we evaluated different popular ones: 

GDL ( Sudre et al., 2017 ) We use the binary case of this loss,

escribed in Eq. (1) . This is also the baseline loss that we use for

he experiments on the selection of α. An important advantage of 

his loss is that it is hyper-parameter free. 

Distance weighted cross-entropy ( Ronneberger et al., 2015 ) 

Net original paper proposed this loss as a way to integrate spatial 

nformation during the training. It is a modified weighted cross- 

ntropy loss, where the weight for each pixel depends both on the 

lass distribution, and its distance to the two cells closest bound- 

ries. We adapted it for our case, where we take into account only 

ne distance: 

 UNET (θ ) = −
∫ 

C 

∫ 
�

u c (p) log s c θ (p) dpdc, 

here C is the set of classes and s c 
θ
(p) are the network predictions

or class c. u c ( p ) is defined as: 

 c (p) = g c (p) 

[
w c + w 0 e 

−D G (p) 2 

2 σ2 

]
, 

here w c = 

∫ 
� g c (p) dp 

| �| , and w 0 = 10 and σ = 5 are two hyper-

arameters. We kept the paper’s default values. 

Focal loss ( Lin et al., 2018 ) The idea of this loss is to give hard

xamples a more important weight: 

 FOCAL = −
∫ 

C 

∫ 
�
(1 − s c θ (p)) γ g c (p) log s c θ (p) dpdc, 

ith γ = 2 as default hyper-parameter. Therefore, during training, 

ixels correctly classified with a high confidence will have little to 

o influence. 

Hausdorff loss ( Karimi and Salcudean, 2019 ) This closely re- 

ated loss is also designed to minimize some distance between the 

wo boundaries, but through a different path. We refer to this loss 

s L HD . 

 HD = 

∫ 
�
(g(p) − s θ (p)) 2 (D G (p) β + D S (p) β ) dp, 

here D S denotes the distance function from predicted boundary S , 

fter thresholding s θ . β is a hyper-parameter, which the authors of 

arimi and Salcudean (2019) set to 2 following a grid search. Un- 

ike our boundary loss, computing D cannot be done in a single 

http://www.isles-challenge.org
http://wmh.isi.uu.nl
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Table 1 

Average DSC and HD95 values (and standard deviation over three independent runs) achieved on the validation subset. 

Best results highlighted in bold. 

Loss ISLES WMH 

DSC HD95 (mm) DSC HD95 (mm) 

L B NA NA NA NA 

L HD NA NA 0.638 (NA) 4.578 (NA) 

GDL 0.511 (0.016) 5.320 (1.742) 0.768 (0.051) 3.634 (2.570) 

w/ L B (2D) 0.644 (0.026) 4.795 (3.712) 0.793 (0.006) 2.039 (1.834) 

w/ L B (3D) 0.659 (0.001) 2.725 (2.196) 0.818 (0.003) 1.702 (1.982) 

w/ L HD 0.582 (0.015) 4.126 (1.634) 0.805 (0.015) 2.151 (2.100) 

UNet cross-entropy Ronneberger et al. (2015) 0.608 (0.025) 4.572 (0.675) 0.757 (0.015) 4.355 (3.388) 

w/ L B (2D) 0.631 (0.016) 5.961 (2.291) 0.756 (0.022) 2.887 (2.629) 

Focal loss Lin et al. (2018) 0.631 (0.046) 4.989 (2.775) 0.808 (0.026) 1.816 (1.370) 

w/ L B (2D) 0.650 (0.019) 1.770 (0.549) 0.786 (0.031) 2.258 (2.513) 
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5 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage. 

morphology.distance _ transform _ edt.html 
6 https://github.com/LIVIAETS/surface-loss 
7 https://github.com/JunMa11/SegWithDistMap 
8 We report the 95th percentile distance value instead of the maximum-distance 

value. 
tep before training. The distance needs to be re-computed at each 

poch during training, for all the images. It also requires to store 

he whole volume � in memory, as we cannot compute the dis- 

ance map for only a subset of �. These might be important com- 

utational and memory limitations, more so when dealing with 

arge images, as is the case for 3D distance maps. 

.3. 2D and 3D distance maps 

While the main experiments resort to a distance map computed 

rom each individual 2D slice, we evaluate the proposed boundary 

oss with a distance map computed from the whole initial 3D seg- 

entation mask. Eq. (5) enables us to have only a subset of � at 

ach update, making it possible to use a 3D distance map with 

ini-batches of 2D slices. 

.4. Selection of α

We study several strategies for selecting α, and its effect on the 

erformances. On top of a constant pre-selected α, we evaluated 

imple scheduling strategies to update it during the training. 

Constant α The simplest method would be to use a constant 

uring the whole training, but this might require careful tuning of 

ts value. 

Increase α We start with a low value of α > 0, and increase it 

radually at the end of each epoch. The weight of the regional loss 

 R remains constant over time. At the end of the training, the two 

osses have the same weight. 

Rebalance α First we rewrite our combined loss as (1 − α) L R + 

L B . As for the increase strategy, we start with a low α > 0, and

ncrease it over time. In this way, we give more importance to the 

egional loss term at the beginning while gradually increasing the 

mpact of the boundary loss term. Note that we make sure that the 

eight for L R never reaches 0; the two losses are used at all times 

uring training. 

.5. Implementation details 

Data pre-processing While the scans are provided as 3D im- 

ges, we process them as a stack of independent 2D images, which 

re fed into the network. In fact, the scans in some datasets, such 

s ISLES, contain between 2 and 16 slices, making them ill-suited 

or 3D convolutions in those cases. The scans were normalized be- 

ween 0 and 1 before being saved as a set of 2D matrices, and

e-scaled to 256 × 256 pixels if needed. When several modalities 

ere available, all of them were concatenated before being used 

s input to the network. We did not use any data augmentation in 

ur experiments. 

Architecture and training We employed UNet 

 Ronneberger et al., 2015 ) as deep learning architecture in our 
5 
xperiments. To train our model, we employed Adam optimizer, 

ith a learning rate of 0.001 and a batch size equal to 8. The 

earning rate is halved if the validation performances do not 

mprove during 20 epochs. We did not use early stopping. 

To compute the level set function φG in Eq. (5) , we used stan- 

ard SciPy functions 5 . Note that, for slices containing only the 

ackground region, we used a zero-distance map, assuming that 

he regional loss is sufficient in those cases. For the increase and 

ebalance α scheduling strategies, we start with α = 0 . 01 and in- 

rease it by 0.01 at the end of each epoch. For all the experiments 

omparing different losses, we use the same rebalance strategy, 

ith the same hyper-parameters. 

In addition, we evaluated the performance when the boundary 

oss is the only objective, i.e., α = 0 . 

For our implementation, we used PyTorch ( Paszke et al., 2017 ), 

nd ran the experiments on a machine equipped with an NVIDIA 

TX 1080 Ti GPU with 11GBs of memory. Our code (data pre- 

rocessing, training and testing scripts) is publicly available 6 . As 

arimi and Salcudean (2019) did not release their code, we relied 

n the re-implementation from Ma et al. (2020) 7 . 

Evaluation For evaluation purposes, we employ the common 

ice Similarity Coefficient (DSC) and modified Hausdorff Distance 8 

HD95) metrics. 

.6. Results 

.6.1. Comparison of regional losses 

In this section, we detail the results that we obtained when us- 

ng different regional losses L R . 

Quantative evaluation Table 1 reports the DSC and HD per- 

ormances for our experiments using four different choices of L R , 

ith each regional term used either alone or in conjunction with 

ur boundary loss in Eq. (6) , on the ISLES and WMH datasets. In

ost of the settings, adding the boundary loss during training im- 

roves the performances, as reflected in the significantly better 

SC and HD values. For instance, on the ISLES segmentation task, 

dding the boundary loss yielded about 13% improvement in DSC 

ver using Generalized Dice loss alone, and about 3% improvement 

ver using UNet cross-entropy or focal loss alone. The discrepancy 

f the improvements the boundary loss brings might be due to 

he difference in the difficulty of the tackled tasks. The more dif- 

cult the tasks (i.e., when regional terms have difficulty achieving 

ood performances), the larger the gain boundary loss brings (as it 

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
https://github.com/LIVIAETS/surface-loss
https://github.com/JunMa11/SegWithDistMap
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Fig. 3. Evolution of DSC values on validation subsets, for different base losses, on both ISLES and WMH. Best viewed in colors. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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omplements regional information). GDL/ISLES is a noticeable case, 

here boundary loss corrected substantially the performance of 

he GDL regional loss, making it the winning competitor (although, 

ithout boundary information, it is the worse-performing regional 

oss). 

The mixed results with the UNet cross-entropy (improvement 

n ISLES, but stall on WMH), and the difference on the HD95 met- 

ics can potentially be explained by a toxic interplay between the 

wo losses: both of them are trying to use the distance from the 

oundary information, potentially counter-acting each others, and 

ntroducing instability. 

Computing the distance map from the 3D volume rather than 

rom the 2D slices gives a small boost in performance (about 
6 
% DSC), and is more noticeable on the training curve for WMH 

 Fig. 3 ). This difference could be explained by the spacing between 

he slices on the z axis: they are quite close (and correlated) in 

he case of WMH. However, in the case of ISLES, the big spacing 

around 1cm) makes slices quite independent. Adding 3D informa- 

ion in this case is less helpful. 

While the Hausdorff loss ( Karimi and Salcudean, 2019 ) also im- 

roves the results over the GDL alone (around 7% on ISLES), its per- 

ormance is not always at the same level as boundary loss (similar 

erformance on WMH, but lower on ISLES). This is consistent with 

he findings of Ma et al. (2020) , which found that the differences 

n performances are dataset dependent. 
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Fig. 4. Visual comparison on two different datasets from the validation set. 
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Using the boundary loss alone does not yield the same com- 

etitive results as a joint loss (i.e., boundary and region), making 

he network collapse quickly into empty foreground regions, i.e., 

oftmax predictions close to zero 9 . We believe that this is due to 

he following technical facts. In theory, the global optimum of the 

oundary loss corresponds to a negative value, as a perfect overlap 

ums only over the negative values of the distance map. In this 

ase, the softmax probabilities correspond to a non-empty fore- 

round. However, an empty foreground (null values of the soft- 

ax probabilities almost everywhere) corresponds to low gradi- 

nts. Therefore, this trivial solution is close a local minimum or 

 saddle point. This is not the case when we use our boundary 

oss in conjunction with a regional loss, which guides the training 

uring the first epochs and avoids getting stuck in such a trivial 

olution. The scheduling method then increases the weight of the 

oundary loss, with the latter becoming very dominant towards 

he end of the training process. This behaviour of boundary terms 

s conceptually similar to the behaviour of classical and popular 

ontour-based energies for level set segmentation, e.g., geodesic 

ctive contours ( Caselles et al., 1997 ), which also require additional 

egional terms to avoid trivial solutions (i.e., empty foreground re- 

ions). 

The learning curves depicted in Fig. 3 show the gap in perfor- 

ances between using a regional loss L R alone and when aug- 

ented with our boundary loss, for different choices of L R . In most 

f the settings, the difference becomes significant at convergence. 
9 For this reason, we do not report metrics in this case, as it would be meaning- 

ess. 

K

i

e

s

7 
his behaviour is most visible when L R = L GDL , and is consistent 

or both metrics and both dataset, which clearly shows the bene- 

ts of employing the proposed boundary loss term. 

Qualitative evaluation Qualitative results are depicted in Fig. 4 . 

nspecting these results visually, we can observe that there are 

wo major types of improvements when employing the proposed 

oundary loss. First, as the methods based on DSC losses, such as 

DL, do not use spatial information, prediction errors are treated 

qually. This means that the errors for pixels/voxels in an already 

etected object have the same importance as the errors produced 

n completely missed objects. On the contrary, as our boundary 

oss is based on the distance map from the ground-truth bound- 

ry ∂G , it will penalize much more such cases, helping to recover 

mall and far regions. This effect is best illustrated in Figs. 1 and 

 (third row). False positives (first row in Fig. 4 ) will be far away

rom the closest foreground, getting a much higher penalty than 

ith the GDL alone. This helps in reducing the number of false 

ositives. Additional qualitative results for other base losses, and 

heir combination with the proposed boundary loss, are depicted 

n Figs. 5 and 6 . These figures also show failure cases ( last column )

f the boundary loss. 

Computational complexity It is worth mentioning that, as the 

roposed boundary loss term involves an element-wise product 

etween two matrices – i.e., the pre-computed level-set function 

G and the softmax output s θ ( p ) – the complexity that it adds 

s negligible as showed in Table 2 . Contrary, the Hausdorff loss 

arimi and Salcudean (2019) introduces around 10% of slowdown 

n the training process. This will be further magnified if we gen- 

ralize to multi-class problems, where an individual distance map 

hould be computed for each class. 
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Fig. 5. Visual comparison on the WMH dataset for different training losses. The last column depicts a failure case, where the proposed loss does not enhance the regional 

loss performance. Best viewed in colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

8 
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Fig. 6. Visual comparison on the ISLES dataset for different training losses. The last column depicts a failure case, where the proposed loss does not enhance the regional 

loss performance. Best viewed in colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

9 
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Fig. 7. Comparison of the training and validation DSC curves for different α selection strategies. For readability, not all settings from Table 3 have been included. Best viewed 

in colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Training time required by different losses. We report the av- 

erage and standard deviation batch time in seconds for each 

method. 

Loss Time (s) per batch 

ISLES (Batch size = 4) WMH (Batch size = 8) 

GDL 0.187 (0.129) 0.345 (0.132) 

w/ L B 0.190 (0.128) 0.345 (0.129) 

w/ L HD 0.210 (0.108) 0.392 (0.092) 

Table 3 

Results on ISLES validation set for different α. 

Strategy ISLES 

DSC HD95 

GDL only 0.511 (0.016) 5.320 (1.742) 

Constant α α = 0 . 001 0.545 (0.020) 4.778 (1.546) 

α = 0 . 01 0.566 (0.019) 5.052 (1.395) 

α = 0 . 05 0.606 (0.015) 5.326 (1.712) 

α = 0 . 1 0.605 (0.010) 5.762 (1.782) 

α = 0 . 5 0.604 (0.006) 9.234 (10.463) 

α = 1 0.628 (0.023) 2.462 (0.706) 

α = 1 . 5 0.565 (0.074) 3.335 (1.164) 

α = 2 0.549 (0.084) 20.275 (16.603) 

Increase α 0.622 (0.004) 4.952 (1.773) 

Rebalance α 0.644 (0.026) 4.795 (3.712) 
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.6.2. Selection of α
Table 3 reports the performances of the proposed approach on 

he ISLES segmentation task for different α values and scheduling 

echniques. Fig. 3 shows a subset of the learning curves related to 

selection strategies in Table 3 . This is an indication that, while 

ur boundary loss can benefit from a tuned balance between the 

wo losses, even a sub-optimal α can already provide improvement 

ver the regional loss alone. Observe that increasing the weight of 

onstant α yields better performances, up to a certain value, with 

he performances decreasing starting from α = 1 . 5 . With α = 2 , 

he performance is similar to a network trained with the boundary 

oss alone. In contrast, using any of the two proposed scheduling 

trategies (increasing α or re-balancing) yields better results than 

ny constant α, without having to explore many configurations. 

From the learning curves ( Fig. 7 ), we can notice that the GDL

lone and the GDL with a small constant α = 0 . 001 have a similar

raining DSC over time, but that their validation DSC are signifi- 

antly different. A similar behaviour can be observed by examining 

he results with constant α = 1 and the rebalanced α: while the 

ebalancing training DSC is slightly higher during the whole train- 

ng, the validation DSC becomes significantly better around half the 
10 
raining time, where the high constant α performances starts de- 

reasing. 

The rebalancing strategy was used in all other experiments, and 

s showed in Table 1 , proved to be a good default strategy to inte-

rate the boundary loss with another regional loss. 

. Conclusion and future works 

We proposed a boundary loss term that can be easily combined 

ith any standard regional loss, to tackle segmentation tasks in 

ighly unbalanced scenarios. Furthermore, the proposed term can 

e implemented with any existing deep network architecture and 

or any N-D segmentation problem. Our experiments on two chal- 

enging and highly unbalanced datasets demonstrated the benefits 

f including our boundary loss during training. It consistently im- 

roved the performances, and by a large margin on one data set, 

ith enhanced training stability. 

In this work, we evaluated the proposed boundary loss in the 

ontext of class imbalance. However, there are other interesting 

venues for extending and evaluating our approach. For instance, 

ur boundary loss has a spatial regularization effect because it is 

ased on distance-to-boundary information. In particular, we ob- 

erved experimentally that it yield contours, which are, typically, 

moother than those obtained with regional losses. Focused on 

he important problem of unbalanced segmentation, our experi- 

ents did not fully investigate the benefits of such a spatial reg- 

larization. An interesting future research avenue will be to ex- 

lore such a regularization effect in applications with challenging 

maging noise, which may prevent regional losses from generat- 

ng smooth contours, e.g., ultrasound imaging. Another limitation 

f our formulation and experiments is that they were limited to 

inary (two-region) segmentation problems. It will be interesting 

o investigate extensions of boundary loss to the multi-region sce- 

ario, with competing distance maps from multiple structures and 

arious/complex topological constraints (e.g., one structure fully in- 

luded within another). 
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